Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 39
Filtre
1.
Viruses ; 15(5)2023 05 17.
Article Dans Anglais | MEDLINE | ID: covidwho-20237578

Résumé

The COVID-19 pandemic caused significant human health and economic consequences. Due to the ability of SARS-CoV-2 to spread rapidly and to cause severe disease and mortality in certain population groups, vaccines are essential for controlling the pandemic in the future. Several licensed vaccines have shown improved protection against SARS-CoV-2 after extended-interval prime-boost immunizations in humans. Therefore, in this study, we aimed to compare the immunogenicity of our two Modified Vaccinia virus Ankara (MVA) based COVID-19 candidate vaccines MVA-SARS-2-S and MVA-SARS-2-ST after short- and long-interval prime-boost immunization schedules in mice. We immunized BALB/c mice using 21-day (short-interval) or 56-day (long-interval) prime-boost vaccination protocols and analyzed spike (S)-specific CD8 T cell immunity and humoral immunity. The two schedules induced robust CD8 T cell responses with no significant differences in their magnitude. Furthermore, both candidate vaccines induced comparable levels of total S, and S2-specific IgG binding antibodies. However, MVA-SARS-2-ST consistently elicited higher amounts of S1-, S receptor binding domain (RBD), and SARS-CoV-2 neutralizing antibodies in both vaccination protocols. Overall, we found very comparable immune responses following short- or long-interval immunization. Thus, our results suggest that the chosen time intervals may not be suitable to observe potential differences in antigen-specific immunity when testing different prime-boost intervals with our candidate vaccines in the mouse model. Despite this, our data clearly showed that MVA-SARS-2-ST induced superior humoral immune responses relative to MVA-SARS-2-S after both immunization schedules.


Sujets)
COVID-19 , SARS-CoV-2 , Humains , Animaux , Souris , Pandémies , COVID-19/prévention et contrôle , Virus de la vaccine , Vaccination/méthodes , Anticorps antiviraux , Immunité cellulaire , Immunité humorale
2.
J Med Virol ; 95(5): e28763, 2023 05.
Article Dans Anglais | MEDLINE | ID: covidwho-20234552

Résumé

People are expected to have been previously vaccinated with a Vaccinia-based vaccine, as until 1980 smallpox vaccination was a standard protocol in China. It is unclear whether people with smallpox vaccine still have antibody against vaccinia virus (VACV) and cross-antibody against monkeypox virus (MPXV). Herein, we assessed the binding antibodies with antigen of VACV-A33 and MPXV-A35 in the general population and HIV-1 infected patients. Firstly, we detected VACV antibody with A33 protein to evaluate the efficiency of smallpox vaccination. The result show that 29% (23 of 79) of hospital staff (age ≥ 42 years) and 63% (60 of 95) of HIV-positive patients (age ≥ 42 years) from Guangzhou Eighth People's Hospital were able to bind A33. However, among the subjects below 42 years of age, 1.5% (3/198) of the hospital volunteer samples and 1% (1/104) of the samples from HIV patients were positive for antibodies against A33 antigen. Then, we assessed the specific cross-reactive antibodies against MPXV A35 protein. 24% (19 of 79) hospital staff (age〉 = 42 years) and 44% (42 of 95) of HIV-positive patients (age〉 = 42 years) were positive. 98% (194/198) of the hospital staff and 99% (103/104) of the HIV patients had no A35-binding antibodies. Further, we found significant sex differences for the reactivity to A35 antigen were observed in HIV population, but no significant sex differences in hospital staff. Further, we analyzed the positivity rate of anti-A35 antibody of men who have sex with men (MSM) and non-MSM in HIV patients (age〉 = 42years). We found that 47% of no-MSM population and 40% of MSM population were positive for A35 antigen, with no significant difference. Lastly, we found only 59 samples were positive for anti-A33 IgG and anti-A35 IgG in all participants. Together, we demonstrated A33 and A35 antigens binding antibodies were detected in HIV patients and general population who were older than 42 years, and cohort studies only provided data of serological detection to support early response to monkeypox outbreak.


Sujets)
Infections à VIH , VIH-1 (Virus de l'Immunodéficience Humaine de type 1) , Orthopoxvirose simienne , Minorités sexuelles , Vaccin antivariolique , Variole , Adulte , Femelle , Humains , Mâle , Antigènes viraux , Homosexualité masculine , Immunoglobuline G , Orthopoxvirose simienne/épidémiologie , Virus de la variole simienne , Virus de la vaccine , Protéines virales
3.
Emerg Microbes Infect ; 12(1): 2204151, 2023 Dec.
Article Dans Anglais | MEDLINE | ID: covidwho-2328381

Résumé

Current unprecedented mpox outbreaks in non-endemic regions represent a global public health concern. Although two live-attenuated vaccinia virus (VACV)-based vaccines have been urgently approved for people at high risk for mpox, a safer and more effective vaccine that can be available for the general public is desperately needed. By utilizing a simplified manufacturing strategy of mixing DNA plasmids before transcription, we developed two multi-antigen mRNA vaccine candidates, which encode four (M1, A29, B6, A35, termed as Rmix4) or six (M1, H3, A29, E8, B6, A35, termed as Rmix6) mpox virus antigens. We demonstrated that those mpox multi-antigen mRNA vaccine candidates elicited similar potent cross-neutralizing immune responses against VACV, and compared to Rmix4, Rmix6 elicited significantly stronger cellular immune responses. Moreover, immunization with both vaccine candidates protected mice from the lethal VACV challenge. Investigation of B-cell receptor (BCR) repertoire elicited by mpox individual antigen demonstrated that the M1 antigen efficiently induced neutralizing antibody responses, and all neutralizing antibodies among the top 20 frequent antibodies appeared to target the same conformational epitope as 7D11, revealing potential vulnerability to viral immune evasion. Our findings suggest that Rmix4 and Rmix6 from a simplified manufacturing process are promising candidates to combat mpox.


Sujets)
Orthopoxvirose simienne , Orthopoxvirus , Animaux , Souris , Anticorps antiviraux , Orthopoxvirus/génétique , Protéines de l'enveloppe virale , Anticorps neutralisants , Virus de la vaccine/génétique
4.
Emerg Infect Dis ; 29(6): 1236-1239, 2023 06.
Article Dans Anglais | MEDLINE | ID: covidwho-2324925

Résumé

We developed an ELISPOT assay for evaluating Middle East respiratory syndrome coronavirus (MERS-CoV)‒specific T-cell responses in dromedary camels. After single modified vaccinia virus Ankara-MERS-S vaccination, seropositive camels showed increased levels of MERS-CoV‒specific T cells and antibodies, indicating suitability of camel vaccinations in disease-endemic areas as a promising approach to control infection.


Sujets)
Infections à coronavirus , Coronavirus du syndrome respiratoire du Moyen-Orient , Animaux , Chameaux , Lymphocytes T , Infections à coronavirus/prévention et contrôle , Infections à coronavirus/médecine vétérinaire , Anticorps antiviraux , Virus de la vaccine , Vaccination
5.
Signal Transduct Target Ther ; 8(1): 172, 2023 04 28.
Article Dans Anglais | MEDLINE | ID: covidwho-2303068

Résumé

Monkeypox has been declared a public health emergency by the World Health Organization. There is an urgent need for efficient and safe vaccines against the monkeypox virus (MPXV) in response to the rapidly spreading monkeypox epidemic. In the age of COVID-19, mRNA vaccines have been highly successful and emerged as platforms enabling rapid development and large-scale preparation. Here, we develop two MPXV quadrivalent mRNA vaccines, named mRNA-A-LNP and mRNA-B-LNP, based on two intracellular mature virus specific proteins (A29L and M1R) and two extracellular enveloped virus specific proteins (A35R and B6R). By administering mRNA-A-LNP and mRNA-B-LNP intramuscularly twice, mice induce MPXV specific IgG antibodies and potent vaccinia virus (VACV) specific neutralizing antibodies. Further, it elicits efficient MPXV specific Th-1 biased cellular immunity, as well as durable effector memory T and germinal center B cell responses in mice. In addition, two doses of mRNA-A-LNP and mRNA-B-LNP are protective against the VACV challenge in mice. And, the passive transfer of sera from mRNA-A-LNP and mRNA-B-LNP-immunized mice protects nude mice against the VACV challenge. Overall, our results demonstrate that mRNA-A-LNP and mRNA-B-LNP appear to be safe and effective vaccine candidates against monkeypox epidemics, as well as against outbreaks caused by other orthopoxviruses, including the smallpox virus.


Sujets)
COVID-19 , Orthopoxvirose simienne , Animaux , Souris , Virus de la vaccine/génétique , Virus de la variole simienne , Orthopoxvirose simienne/prévention et contrôle , Vaccins combinés , Souris nude , Protéines virales/génétique , Immunité
6.
J Biol Chem ; 299(6): 104749, 2023 06.
Article Dans Anglais | MEDLINE | ID: covidwho-2292505

Résumé

The recent SARS-CoV-2 and mpox outbreaks have highlighted the need to expand our arsenal of broad-spectrum antiviral agents for future pandemic preparedness. Host-directed antivirals are an important tool to accomplish this as they typically offer protection against a broader range of viruses than direct-acting antivirals and have a lower susceptibility to viral mutations that cause drug resistance. In this study, we investigate the exchange protein activated by cAMP (EPAC) as a target for broad-spectrum antiviral therapy. We find that the EPAC-selective inhibitor, ESI-09, provides robust protection against a variety of viruses, including SARS-CoV-2 and Vaccinia (VACV)-an orthopox virus from the same family as mpox. We show, using a series of immunofluorescence experiments, that ESI-09 remodels the actin cytoskeleton through Rac1/Cdc42 GTPases and the Arp2/3 complex, impairing internalization of viruses that use clathrin-mediated endocytosis (e.g. VSV) or micropinocytosis (e.g. VACV). Additionally, we find that ESI-09 disrupts syncytia formation and inhibits cell-to-cell transmission of viruses such as measles and VACV. When administered to immune-deficient mice in an intranasal challenge model, ESI-09 protects mice from lethal doses of VACV and prevents formation of pox lesions. Altogether, our finding shows that EPAC antagonists such as ESI-09 are promising candidates for broad-spectrum antiviral therapy that can aid in the fight against ongoing and future viral outbreaks.


Sujets)
Antiviraux , COVID-19 , Orthopoxvirose simienne , Vaccine , Animaux , Souris , Antiviraux/pharmacologie , Orthopoxvirose simienne/traitement médicamenteux , SARS-CoV-2/effets des médicaments et des substances chimiques , Vaccine/traitement médicamenteux , Virus de la vaccine/effets des médicaments et des substances chimiques
7.
Nucleic Acids Res ; 49(22): 13019-13030, 2021 12 16.
Article Dans Anglais | MEDLINE | ID: covidwho-2285864

Résumé

SARS-CoV-2 is a positive-sense RNA virus responsible for the Coronavirus Disease 2019 (COVID-19) pandemic, which continues to cause significant morbidity, mortality and economic strain. SARS-CoV-2 can cause severe respiratory disease and death in humans, highlighting the need for effective antiviral therapies. The RNA synthesis machinery of SARS-CoV-2 is an ideal drug target and consists of non-structural protein 12 (nsp12), which is directly responsible for RNA synthesis, and numerous co-factors involved in RNA proofreading and 5' capping of viral RNAs. The formation of the 5' 7-methylguanosine (m7G) cap structure is known to require a guanylyltransferase (GTase) as well as a 5' triphosphatase and methyltransferases; however, the mechanism of SARS-CoV-2 RNA capping remains poorly understood. Here we find that SARS-CoV-2 nsp12 is involved in viral RNA capping as a GTase, carrying out the addition of a GTP nucleotide to the 5' end of viral RNA via a 5' to 5' triphosphate linkage. We further show that the nsp12 NiRAN (nidovirus RdRp-associated nucleotidyltransferase) domain performs this reaction, and can be inhibited by remdesivir triphosphate, the active form of the antiviral drug remdesivir. These findings improve understanding of coronavirus RNA synthesis and highlight a new target for novel or repurposed antiviral drugs against SARS-CoV-2.


Sujets)
Adénosine triphosphate/analogues et dérivés , Antiviraux/pharmacologie , ARN polymérase ARN-dépendante de coronavirus/métabolisme , Nucleotidyltransferases/antagonistes et inhibiteurs , ARN viral/biosynthèse , SARS-CoV-2/enzymologie , Adénosine triphosphate/pharmacologie , ARN polymérase ARN-dépendante de coronavirus/antagonistes et inhibiteurs , Génome viral/génétique , Guanosine/analogues et dérivés , Guanosine/métabolisme , Humains , Nucleotidyltransferases/métabolisme , Coiffes des ARN/génétique , SARS-CoV-2/génétique , Virus de la vaccine/enzymologie , Virus de la vaccine/métabolisme ,
8.
Emerg Microbes Infect ; 12(1): 2192815, 2023 Dec.
Article Dans Anglais | MEDLINE | ID: covidwho-2288611

Résumé

The re-emerging mpox (formerly monkeypox) virus (MPXV), a member of Orthopoxvirus genus together with variola virus (VARV) and vaccinia virus (VACV), has led to public health emergency of international concern since July 2022. Inspired by the unprecedent success of coronavirus disease 2019 (COVID-19) mRNA vaccines, the development of a safe and effective mRNA vaccine against MPXV is of high priority. Based on our established lipid nanoparticle (LNP)-encapsulated mRNA vaccine platform, we rationally constructed and prepared a panel of multicomponent MPXV vaccine candidates encoding different combinations of viral antigens including M1R, E8L, A29L, A35R, and B6R. In vitro and in vivo characterization demonstrated that two immunizations of all mRNA vaccine candidates elicit a robust antibody response as well as antigen-specific Th1-biased cellular response in mice. Importantly, the penta- and tetra-component vaccine candidates AR-MPXV5 and AR-MPXV4a showed superior capability of inducing neutralizing antibodies as well as of protecting from VACV challenge in mice. Our study provides critical insights to understand the protection mechanism of MPXV infection and direct evidence supporting further clinical development of these multicomponent mRNA vaccine candidates.


Sujets)
COVID-19 , Orthopoxvirose simienne , Animaux , Souris , COVID-19/prévention et contrôle , Vaccins synthétiques/génétique , Virus de la vaccine/génétique , Virus de la variole simienne , Vaccins contre la COVID-19 , Anticorps antiviraux
9.
PLoS One ; 18(1): e0279027, 2023.
Article Dans Anglais | MEDLINE | ID: covidwho-2224465

Résumé

Iodine-V ((C26H39N4O15)x * (I2)y) demonstrates an in vitro virucidal activity by deactivating SARS-CoV-2 viral titers. It combines elemental iodine (I2) and fulvic acid (C14H12O8), forming a clathrate compound. The antiviral properties of Iodine-V reduce viral load in the air to inhibit viral transmission indoors. This antiviral property was applied to form a disinfectant solution called SAFEAIR-X Aerosol. The current study evaluates the antiviral efficacy of Iodine-V in aerosol form in a prototype called SAFEAIR-X Aerosol. The experiment measured the antiviral efficacy of SAFEAIR-X following exposure to the Vaccinia virus (VACV) samples as a confirmed surrogate for SARS-CoV-2. The SAFEAIR-X showed 96% effectiveness, with 2 seconds of spraying duration and 60 seconds of contact time releasing less than 0.0001 ppm of iodine into the air, and a log reduction value of 1.50 at 60 seconds in 2 out of 3 tests was observed. Therefore, this study demonstrates SAFEAIR-X aerosol as a potential indoor surface and air disinfectant.


Sujets)
COVID-19 , Désinfectants , Iode , Humains , Désinfectants/pharmacologie , Iode/pharmacologie , Virus de la vaccine , SARS-CoV-2 , COVID-19/prévention et contrôle , Gouttelettes et aérosols respiratoires , Antiviraux
10.
Vaccine ; 40(49): 7022-7031, 2022 Nov 22.
Article Dans Anglais | MEDLINE | ID: covidwho-2119102

Résumé

Historically, virulent variola virus infection caused hundreds of millions of deaths. The smallpox pandemic in human beings has spread for centuries until the advent of the attenuated vaccinia virus (VV) vaccine, which played a crucial role in eradicating the deadly contagious disease. Decades of exploration and utilization have validated the attenuated VV as a promising vaccine vehicle against various lethal viruses. In this review, we focus on the advances in VV-based vaccine vector studies, including construction approaches of recombinant VV, the impact of VV-specific pre-existing immunity on subsequent VV-based vaccines, and antigen-specific immune responses. More specifically, the recombinant VV-based flaviviruses are intensively discussed. Based on the publication data, this review aims to provide valuable insights and guidance for future VV-based vaccine development.


Sujets)
Flavivirus , Vaccin antivariolique , Vaccins , Vaccine , Humains , Virus de la vaccine , Flavivirus/génétique , Développement de vaccin , Vecteurs génétiques
11.
Viruses ; 14(11)2022 Nov 11.
Article Dans Anglais | MEDLINE | ID: covidwho-2110274

Résumé

The outbreak of monkeypox, coupled with the onslaught of the COVID-19 pandemic is a critical communicable disease. This study aimed to systematically identify and review research done on preclinical studies focusing on the potential monkeypox treatment and immunization. The presented juxtaposition of efficacy of potential treatments and vaccination that had been tested in preclinical trials could serve as a useful primer of monkeypox virus. The literature identified using key terms such as monkeypox virus or management or vaccine stringed using Boolean operators was systematically reviewed. Pubmed, SCOPUS, Cochrane, and preprint databases were used, and screening was performed in accordance with PRISMA guidelines. A total of 467 results from registered databases and 116 from grey literature databases were screened. Of these results, 72 studies from registered databases and three grey literature studies underwent full-text screening for eligibility. In this systematic review, a total of 27 articles were eligible according to the inclusion criteria and were used. Tecovirimat, known as TPOXX or ST-246, is an antiviral drug indicated for smallpox infection whereas brincidofovir inhibits the viral DNA polymerase after incorporation into viral DNA. The ability of tecovirimat in providing protection to poxvirus-challenged animals from death had been demonstrated in a number of animal studies. Non-inferior with regard to immunogenicity was reported for the live smallpox/monkeypox vaccine compared with a single dose of a licensed live smallpox vaccine. The trial involving the live vaccine showed a geometric mean titre of vaccinia-neutralizing antibodies post two weeks of the second dose of the live smallpox/monkeypox vaccine. Of note, up to the third generation of smallpox vaccines-particularly JYNNEOS and Lc16m8-have been developed as preventive measures for MPXV infection and these vaccines had been demonstrated to have improved safety compared to the earlier generations.


Sujets)
, COVID-19 , Orthopoxvirose simienne , Vaccin antivariolique , Variole , Virus de la variole , Animaux , Humains , Orthopoxvirose simienne/traitement médicamenteux , Orthopoxvirose simienne/prévention et contrôle , Variole/prévention et contrôle , Pandémies , COVID-19/prévention et contrôle , Virus de la variole simienne , Virus de la vaccine , Vaccins atténués
12.
Front Immunol ; 13: 995235, 2022.
Article Dans Anglais | MEDLINE | ID: covidwho-2043451

Résumé

Current coronavirus disease-19 (COVID-19) vaccines are administered by the intramuscular route, but this vaccine administration failed to prevent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus infection in the upper respiratory tract, mainly due to the absence of virus-specific mucosal immune responses. It is hypothesized that intranasal (IN) vaccination could induce both mucosal and systemic immune responses that blocked SARS-CoV-2 transmission and COVID-19 progression. Here, we evaluated in mice IN administration of three modified vaccinia virus Ankara (MVA)-based vaccine candidates expressing the SARS-CoV-2 spike (S) protein, either the full-length native S or a prefusion-stabilized [S(3P)] protein; SARS-CoV-2-specific immune responses and efficacy were determined after a single IN vaccine application. Results showed that in C57BL/6 mice, MVA-based vaccine candidates elicited S-specific IgG and IgA antibodies in serum and bronchoalveolar lavages, respectively, and neutralizing antibodies against parental and SARS-CoV-2 variants of concern (VoC), with MVA-S(3P) being the most immunogenic vaccine candidate. IN vaccine administration also induced polyfunctional S-specific Th1-skewed CD4+ and cytotoxic CD8+ T-cell immune responses locally (in lungs and bronchoalveolar lymph nodes) or systemically (in spleen). Remarkably, a single IN vaccine dose protected susceptible K18-hACE2 transgenic mice from morbidity and mortality caused by SARS-CoV-2 infection, with MVA-S(3P) being the most effective candidate. Infectious SARS-CoV-2 viruses were undetectable in lungs and nasal washes, correlating with high titers of S-specific IgGs and neutralizing antibodies against parental SARS-CoV-2 and several VoC. Moreover, low histopathological lung lesions and low levels of pro-inflammatory cytokines in lungs and nasal washes were detected in vaccinated animals. These results demonstrated that a single IN inoculation of our MVA-based vaccine candidates induced potent immune responses, either locally or systemically, and protected animal models from COVID-19. These results also identified an effective vaccine administration route to induce mucosal immunity that should prevent SARS-CoV-2 host-to-host transmission.


Sujets)
COVID-19 , Vaccins antiviraux , Administration par voie nasale , Animaux , Anticorps neutralisants , Anticorps antiviraux , Production d'anticorps , COVID-19/prévention et contrôle , Vaccins contre la COVID-19 , Cytokines , Immunoglobuline A , Immunoglobuline G , Souris , Souris de lignée C57BL , SARS-CoV-2 , Virus de la vaccine/génétique
13.
Vaccine ; 40(40): 5757-5763, 2022 09 22.
Article Dans Anglais | MEDLINE | ID: covidwho-2004590

Résumé

Respiratory transmission of SARS-CoV-2 is considered to be the major dissemination route for COVID-19, therefore, mucosal immune responses have great importance in preventing SARS-CoV-2 from infection. In this study, we constructed a recombinant Vaccinia virus (VV) harboring trimeric receptor-binding domain (RBD) of SARS-CoV-2 spike protein (VV-tRBD), and evaluated the immune responses towards RBD following intranasal immunization against mice and rabbits. In BALB/c mice, intranasal immunization with VV-tRBD elicited robust humoral and cellular immune responses, with high-level of both neutralizing IgG and IgA in sera against SARS-CoV-2 psudoviruses, and a number of RBD-specific IFN-γ-secreting lymphocytes. Sera from immunized rabbits also exhibited neutralization effects. Notably, RBD-specific secretory IgA (sIgA) in both nasal washes and bronchoalveolar lavage fluids (BALs) were detectable and showed substantial neutralization activities. Collectively, a recombinant VV expressing trimeric RBD confers robust systemic immune response and mucosal neutralizing antibodies, thus warranting further exploration as a mucosal vaccine.


Sujets)
COVID-19 , Vaccins antiviraux , Animaux , Anticorps neutralisants , Anticorps antiviraux , Humains , Immunisation , Souris , Souris de lignée BALB C , Lapins , SARS-CoV-2 , Glycoprotéine de spicule des coronavirus , Virus de la vaccine/génétique
14.
Lancet Microbe ; 3(4): e252-e264, 2022 04.
Article Dans Anglais | MEDLINE | ID: covidwho-1937379

Résumé

Background: COH04S1, a synthetic attenuated modified vaccinia virus Ankara vector co-expressing SARS-CoV-2 spike and nucleocapsid antigens, was tested for safety and immunogenicity in healthy adults. Methods: This combined open-label and randomised, phase 1 trial was done at the City of Hope Comprehensive Cancer Center (Duarte, CA, USA). We included participants aged 18-54 years with a negative SARS-CoV-2 antibody and PCR test, normal haematology and chemistry panels, a normal electrocardiogram and troponin concentration, negative pregnancy test if female, body-mass index of 30 kg/m2 or less, and no modified vaccinia virus Ankara or poxvirus vaccine in the past 12 months. In the open-label cohort, 1·0 × 107 plaque-forming units (PFU; low dose), 1·0 × 108 PFU (medium dose), and 2·5 × 108 PFU (high dose) of COH04S1 were administered by intramuscular injection on day 0 and 28 to sentinel participants using a queue-based statistical design to limit risk. In a randomised dose expansion cohort, additional participants were randomly assigned (3:3:1), using block size of seven, to receive two placebo vaccines (placebo group), one low-dose COH04S1 and one placebo vaccine (low-dose COH04S1 plus placebo group), or two low-dose COH04S1 vaccines (low-dose COH04S1 group). The primary outcome was safety and tolerability, with secondary objectives assessing vaccine-specific immunogenicity. The primary immunological outcome was a four times increase (seroconversion) from baseline in spike-specific or nucleocapsid-specific IgG titres within 28 days of the last injection, and seroconversion rates were compared with participants who received placebo using Fisher's exact test. Additional secondary outcomes included assessment of viral neutralisation and cellular responses. This trial is registered with ClinicalTrials.gov, NCT046339466. Findings: Between Dec 13, 2020, and May 24, 2021, 56 participants initiated vaccination. On day 0 and 28, 17 participants received low-dose COH04S1, eight received medium-dose COH04S1, nine received high-dose COH04S1, five received placebo, 13 received low-dose COH04S1 followed by placebo, and four discontinued early. Grade 3 fever was observed in one participant who received low-dose COH04S1 and placebo, and grade 2 anxiety or fatigue was seen in one participant who received medium-dose COH04S1. No severe adverse events were reported. Seroconversion was observed in all 34 participants for spike protein and 32 (94%) for nucleocapsid protein (p<0·0001 vs placebo for each comparison). Four times or more increase in SARS-CoV-2 neutralising antibodies within 56 days was measured in nine of 17 participants in the low-dose COH04S1 group, all eight participants in the medium-dose COH04S1 group, and eight of nine participants in the high-dose COH04S1 group (p=0·0035 combined dose levels vs placebo). Post-prime and post-boost four times increase in spike-specific or nucleocapsid-specific T cells secreting interferon-γ was measured in 48 (98%; 95% CI 89-100) of 49 participants who received at least one dose of COH04S1 and provided a sample for immunological analysis. Interpretation: COH04S1 was well tolerated and induced spike-specific and nucleocapsid-specific antibody and T-cell responses. Future evaluation of this COVID-19 vaccine candidate as a primary or boost vaccination is warranted. Funding: The Carol Moss Foundation and City of Hope Integrated Drug Development Venture programme.


Sujets)
Vaccins contre la COVID-19 , COVID-19 , Adolescent , Adulte , Anticorps antiviraux , COVID-19/prévention et contrôle , Vaccins contre la COVID-19/effets indésirables , Femelle , Humains , Mâle , Adulte d'âge moyen , SARS-CoV-2/génétique , Virus de la vaccine/génétique , Jeune adulte
15.
Cell Rep Med ; 3(7): 100685, 2022 07 19.
Article Dans Anglais | MEDLINE | ID: covidwho-1937310

Résumé

The Middle East respiratory syndrome (MERS) is a respiratory disease caused by MERS coronavirus (MERS-CoV). In follow up to a phase 1 trial, we perform a longitudinal analysis of immune responses following immunization with the modified vaccinia virus Ankara (MVA)-based vaccine MVA-MERS-S encoding the MERS-CoV-spike protein. Three homologous immunizations were administered on days 0 and 28 with a late booster vaccination at 12 ± 4 months. Antibody isotypes, subclasses, and neutralization capacity as well as T and B cell responses were monitored over a period of 3 years using standard and bead-based enzyme-linked immunosorbent assay (ELISA), 50% plaque-reduction neutralization test (PRNT50), enzyme-linked immunospot (ELISpot), and flow cytometry. The late booster immunization significantly increases the frequency and persistence of spike-specific B cells, binding immunoglobulin G1 (IgG1) and neutralizing antibodies but not T cell responses. Our data highlight the potential of a late boost to enhance long-term antibody and B cell immunity against MERS-CoV. Our findings on the MVA-MERS-S vaccine may be of relevance for coronavirus 2019 (COVID-19) vaccination strategies.


Sujets)
COVID-19 , Coronavirus du syndrome respiratoire du Moyen-Orient , Vaccins antiviraux , Anticorps antiviraux , COVID-19/prévention et contrôle , Essais cliniques de phase I comme sujet , Études de suivi , Humains , Vaccination , Virus de la vaccine
16.
Proc Natl Acad Sci U S A ; 119(24): e2202069119, 2022 06 14.
Article Dans Anglais | MEDLINE | ID: covidwho-1890415

Résumé

Current vaccines have greatly diminished the severity of the COVID-19 pandemic, even though they do not entirely prevent infection and transmission, likely due to insufficient immunity in the upper respiratory tract. Here, we compare intramuscular and intranasal administration of a live, replication-deficient modified vaccinia virus Ankara (MVA)-based Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) spike (S) vaccine to raise protective immune responses in the K18-hACE2 mouse model. Using a recombinant MVA expressing firefly luciferase for tracking, live imaging revealed luminescence of the respiratory tract of mice within 6 h and persisting for 3 d following intranasal inoculation, whereas luminescence remained at the site of intramuscular vaccination. Intramuscular vaccination induced S-binding-Immunoglobulin G (IgG) and neutralizing antibodies in the lungs, whereas intranasal vaccination also induced Immunoglobulin A (IgA) and higher levels of antigen-specific CD3+CD8+IFN-γ+ T cells. Similarly, IgG and neutralizing antibodies were present in the blood of mice immunized intranasally and intramuscularly, but IgA was detected only after intranasal inoculation. Intranasal boosting increased IgA after intranasal or intramuscular priming. While intramuscular vaccination prevented morbidity and cleared SARS-CoV-2 from the respiratory tract within several days after challenge, intranasal vaccination was more effective as neither infectious virus nor viral messenger (m)RNAs were detected in the nasal turbinates or lungs as early as 2 d after challenge, indicating prevention or rapid elimination of SARS-CoV-2 infection. Additionally, we determined that neutralizing antibody persisted for more than 6 mo and that serum induced to the Wuhan S protein neutralized pseudoviruses expressing the S proteins of variants, although with less potency, particularly for Beta and Omicron.


Sujets)
Vaccins contre la COVID-19 , COVID-19 , Immunoglobuline A , Appareil respiratoire , SARS-CoV-2 , Glycoprotéine de spicule des coronavirus , Virus de la vaccine , Administration par voie nasale , Angiotensin-converting enzyme 2/génétique , Animaux , Anticorps neutralisants/sang , Anticorps antiviraux/sang , COVID-19/prévention et contrôle , COVID-19/transmission , Vaccins contre la COVID-19/administration et posologie , Vaccins contre la COVID-19/immunologie , Humains , Immunoglobuline A/sang , Immunoglobuline G/sang , Souris , Souris transgéniques , Appareil respiratoire/immunologie , SARS-CoV-2/immunologie , Glycoprotéine de spicule des coronavirus/immunologie , Vaccination/méthodes , Virus de la vaccine/génétique , Virus de la vaccine/immunologie
17.
J Virol ; 96(9): e0038922, 2022 05 11.
Article Dans Anglais | MEDLINE | ID: covidwho-1784769

Résumé

Increasing cases of SARS-CoV-2 breakthrough infections from immunization with current spike protein-based COVID-19 vaccines highlight the need to develop alternative vaccines using different platforms and/or antigens. In this study, we expressed SARS-CoV-2 spike and nucleocapsid proteins based on a novel vaccinia virus (VACV) ACAM2000 platform (rACAM2000). In this platform, the vaccinia virus host range and immunoregulatory gene E3L was deleted to make the virus attenuated and to enhance innate immune responses, and another host range gene, K3L, was replaced with a poxvirus ortholog gene, taterapox virus 037 (TATV037), to make virus replication competent in both hamster and human cells. Following a single intramuscular immunization, the rACAM2000 coexpressing the spike and nucleocapsid proteins induced significantly improved protection against SARS-CoV-2 challenge in comparison to rACAM2000 expressing the individual proteins in a hamster model, as shown by reduced weight loss and shorter recovery time. The protection was associated with reduced viral loads, increased neutralizing antibody titer, and reduced neutrophil-to-lymphocyte ratio. Thus, our study demonstrates that rACAM2000 expressing a combination of the spike and nucleocapsid antigens is a promising COVID-19 vaccine candidate, and further studies will investigate if the rACAM2000 vaccine candidate can induce a long-lasting immunity against infection by SARS-CoV-2 variants of concern. IMPORTANCE Continuous emergence of SARS-CoV-2 variants which cause breakthrough infection from the immunity induced by current spike protein-based COVID-19 vaccines highlights the need for new generations of vaccines that will induce long-lasting immunity against a wide range of the variants. To this end, we investigated the protective efficacy of the recombinant COVID-19 vaccine candidates based on a novel VACV ACAM2000 platform, in which an immunoregulatory gene, E3L, was deleted and both the SARS-CoV-2 spike (S) and nucleocapsid (N) antigens were expressed. Thus, it is expected that the vaccine candidate we constructed should be more immunogenic and safer. In the initial study described in this work, we demonstrated that the vaccine candidate expressing both the S and N proteins is superior to the constructs expressing an individual protein (S or N) in protecting hamsters against SARS-CoV-2 challenge after a single-dose immunization, and further investigation against different SARS-CoV-2 variants will warrant future clinical evaluations.


Sujets)
Vaccins contre la COVID-19 , COVID-19 , Glycoprotéine de spicule des coronavirus , Animaux , Anticorps neutralisants/sang , Anticorps antiviraux/sang , COVID-19/prévention et contrôle , Vaccins contre la COVID-19/génétique , Protéines de la nucléocapside des coronavirus , Cricetinae , Humains , Immunisation , Protéines nucléocapside/immunologie , Phosphoprotéines , SARS-CoV-2 , Vaccin antivariolique , Glycoprotéine de spicule des coronavirus/immunologie , Virus de la vaccine
18.
Front Immunol ; 13: 845969, 2022.
Article Dans Anglais | MEDLINE | ID: covidwho-1775680

Résumé

To control the coronavirus disease 2019 (COVID-19) pandemic and the emergence of different variants of concern (VoCs), novel vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are needed. In this study, we report the potent immunogenicity and efficacy induced in hamsters by a vaccine candidate based on a modified vaccinia virus Ankara (MVA) vector expressing a human codon optimized full-length SARS-CoV-2 spike (S) protein (MVA-S). Immunization with one or two doses of MVA-S elicited high titers of S- and receptor-binding domain (RBD)-binding IgG antibodies and neutralizing antibodies against parental SARS-CoV-2 and VoC alpha, beta, gamma, delta, and omicron. After SARS-CoV-2 challenge, MVA-S-vaccinated hamsters showed a significantly strong reduction of viral RNA and infectious virus in the lungs compared to the MVA-WT control group. Moreover, a marked reduction in lung histopathology was also observed in MVA-S-vaccinated hamsters. These results favor the use of MVA-S as a potential vaccine candidate for SARS-CoV-2 in clinical trials.


Sujets)
COVID-19 , Animaux , Anticorps antiviraux , COVID-19/prévention et contrôle , Vaccins contre la COVID-19 , Cricetinae , Humains , SARS-CoV-2 , Glycoprotéine de spicule des coronavirus/génétique , Virus de la vaccine/génétique
19.
Front Immunol ; 13: 845887, 2022.
Article Dans Anglais | MEDLINE | ID: covidwho-1775679

Résumé

Novel safe, immunogenic, and effective vaccines are needed to control the COVID-19 pandemic, caused by SARS-CoV-2. Here, we describe the safety, robust immunogenicity, and potent efficacy elicited in rhesus macaques by a modified vaccinia virus Ankara (MVA) vector expressing a full-length SARS-CoV-2 spike (S) protein (MVA-S). MVA-S vaccination was well tolerated and induced S and receptor-binding domain (RBD)-binding IgG antibodies and neutralizing antibodies against SARS-CoV-2 and several variants of concern. S-specific IFNγ, but not IL-4, -producing cells were also elicited. After SARS-CoV-2 challenge, vaccinated animals showed a significant strong reduction of virus loads in bronchoalveolar lavages (BAL) and decreased levels in throat and nasal mucosa. Remarkably, MVA-S also protected macaques from fever and infection-induced cytokine storm. Computed tomography and histological examination of the lungs showed reduced lung pathology in MVA-S-vaccinated animals. These findings favor the use of MVA-S as a potential vaccine for SARS-CoV-2 in clinical trials.


Sujets)
COVID-19 , Virus de la vaccine , Animaux , Anticorps antiviraux , COVID-19/prévention et contrôle , Vaccins contre la COVID-19 , Humains , Macaca mulatta , Pandémies , SARS-CoV-2/génétique , Glycoprotéine de spicule des coronavirus , Virus de la vaccine/génétique
20.
Sci Immunol ; 7(72): eabo0226, 2022 06 24.
Article Dans Anglais | MEDLINE | ID: covidwho-1769818

Résumé

SARS-CoV-2 vaccines should induce broadly cross-reactive humoral and T cell responses to protect against emerging variants of concern (VOCs). Here, we inactivated the furin cleavage site (FCS) of spike expressed by a modified vaccinia Ankara (MVA) virus vaccine (MVA/SdFCS) and found that FCS inactivation markedly increased spike binding to human ACE2. After vaccination of mice, the MVA/SdFCS vaccine induced eightfold higher neutralizing antibodies compared with MVA/S, which expressed spike without FCS inactivation, and protected against the Beta variant. We next added nucleocapsid to the MVA/SdFCS vaccine (MVA/SdFCS-N) and tested its immunogenicity and efficacy via intramuscular (IM), buccal (BU), or sublingual (SL) routes in rhesus macaques. IM vaccination induced spike-specific IgG in serum and mucosae (nose, throat, lung, and rectum) that neutralized the homologous (WA-1/2020) and heterologous VOCs, including Delta, with minimal loss (<2-fold) of activity. IM vaccination also induced both spike- and nucleocapsid-specific CD4 and CD8 T cell responses in the blood. In contrast, the SL and BU vaccinations induced less spike-specific IgG in secretions and lower levels of polyfunctional IgG in serum compared with IM vaccination. After challenge with the SARS-CoV-2 Delta variant, the IM route induced robust protection, the BU route induced moderate protection, and the SL route induced no protection. Vaccine-induced neutralizing and non-neutralizing antibody effector functions positively correlated with protection, but only the effector functions correlated with early protection. Thus, IM vaccination with MVA/SdFCS-N vaccine elicited cross-reactive antibody and T cell responses, protecting against heterologous SARS-CoV-2 VOC more effectively than other routes of vaccination.


Sujets)
COVID-19 , Hépatite D , Vaccine , Vaccins antiviraux , Animaux , Anticorps antiviraux , COVID-19/prévention et contrôle , Vaccins contre la COVID-19 , Humains , Immunoglobuline G , Macaca mulatta , Souris , Nucléocapside/métabolisme , SARS-CoV-2 , Virus de la vaccine/métabolisme
SÉLECTION CITATIONS
Détails de la recherche